Bifurcation Analysis of an Sirs Epidemic Model with Standard Incidence Rate and Saturated Treatment Function∗

نویسندگان

  • Yixian Gao
  • Weipeng Zhang
  • Dan Liu
  • Yanju Xiao
چکیده

An epidemic model with standard incidence rate and saturated treatment function of infectious individuals is proposed to understand the effect of the capacity for treatment of infective individuals on the disease spread. The treatment function in this paper is a continuous and differential function which exhibits the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. It is proved that the existence and stability of the disease-free and endemic equilibria for the model are not only related to the basic reproduction number but also to the capacity for treatment of infective individuals. And a backward bifurcation is found when the capacity is not enough. By computing the first Lyapunov coefficient, we can determine the type of Hopf bifurcation, i.e., subcritical Hopf bifurcation or supercritical Hopf bifurcation. We also show that under some conditions the model undergoes Bogdanov-Takens bifurcation. Finally, numerical simulations are given to support some of the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Stability and bifurcation analysis of epidemic models with saturated incidence rates: an application to a nonmonotone incidence rate

We analyze local asymptotic stability of an SIRS epidemic model with a distributed delay. The incidence rate is given by a general saturated function of the number of infective individuals. Our first aim is to find a class of nonmonotone incidence rates such that a unique endemic equilibrium is always asymptotically stable. We establish a characterization for the incidence rate, which shows tha...

متن کامل

Analysis of an SEIR Epidemic Model with Saturated Incidence and Saturated Treatment Function

The dynamics of SEIR epidemic model with saturated incidence rate and saturated treatment function are explored in this paper. The basic reproduction number that determines disease extinction and disease survival is given. The existing threshold conditions of all kinds of the equilibrium points are obtained. Sufficient conditions are established for the existence of backward bifurcation. The lo...

متن کامل

Hopf bifurcation analysis for a delayed SIRS epidemic model with a nonlinear incidence rate

This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained by regarding the time delay as the bifurcation parameter. Further, the properties of Hopf bifurcation such ...

متن کامل

On the Dynamics of a Delayed Sir Epidemic Model with a Modified Saturated Incidence Rate

In this paper, a delayed SIR epidemic model with modified saturated incidence rate is proposed. The local stability and the existence of Hopf bifurcation are established. Also some numerical simulations are given to illustrate the theoretical analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017